Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Ann Bot ; 124(6): 1067-1089, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31190078

RESUMO

BACKGROUND AND AIMS: Cell wall disassembly occurs naturally in plants by the action of several glycosyl-hydrolases during different developmental processes such as lysigenous and constitutive aerenchyma formation in sugarcane roots. Wall degradation has been reported in aerenchyma development in different species, but little is known about the action of glycosyl-hydrolases in this process. METHODS: In this work, gene expression, protein levels and enzymatic activity of cell wall hydrolases were assessed. Since aerenchyma formation is constitutive in sugarcane roots, they were assessed in segments corresponding to the first 5 cm from the root tip where aerenchyma develops. KEY RESULTS: Our results indicate that the wall degradation starts with a partial attack on pectins (by acetyl esterases, endopolygalacturonases, ß-galactosidases and α-arabinofuranosidases) followed by the action of ß-glucan-/callose-hydrolysing enzymes. At the same time, there are modifications in arabinoxylan (by α-arabinofuranosidases), xyloglucan (by XTH), xyloglucan-cellulose interactions (by expansins) and partial hydrolysis of cellulose. Saccharification revealed that access to the cell wall varies among segments, consistent with an increase in recalcitrance and composite formation during aerenchyma development. CONCLUSION: Our findings corroborate the hypothesis that hydrolases are synchronically synthesized, leading to cell wall modifications that are modulated by the fine structure of cell wall polymers during aerenchyma formation in the cortex of sugarcane roots.


Assuntos
Saccharum , Parede Celular , Hidrolases , Meristema , Raízes de Plantas
2.
Funct Plant Biol ; 45(8): 865-876, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32291068

RESUMO

Photosynthesis and growth are dependent on environmental conditions and plant developmental stages. However, it is still not clear how the environment and development influence the diurnal dynamics of nonstructural carbohydrates production and how they affect growth. This is particularly the case of C4 plants such as sugarcane (Saccharum spp.). Aiming to understand the dynamics of leaf gas exchange and nonstructural carbohydrates accumulation in different organs during diurnal cycles across the developmental stages, we evaluated these parameters in sugarcane plants in a 12-month field experiment. Our results show that during the first 3 months of development, light and vapour pressure deficit (VPD) were the primary drivers of photosynthesis, stomatal conductance and growth. After 6 months, in addition to light and VPD, drought, carbohydrate accumulation and the mechanisms possibly associated with water status maintenance were also likely to play a role in gas exchange and growth regulation. Carbohydrates vary throughout the day in all organs until Month 9, consistent with their use for growth during the night. At 12 months, sucrose is accumulated in all organs and starch had accumulated in leaves without any diurnal variation. Understanding of how photosynthesis and the dynamics of carbohydrates are controlled might lead to strategies that could increase sugarcane's biomass production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...